
1/2

The Magnetic Force

Say a charge Q is located at some **point** in space (denoted by position vector \overline{r}), and is moving with velocity **u**.

Likewise, there exists **everywhere** in space a magnetic flux density (we neither know nor care **how** this field was **created**).

The value (both magnitude and direction) of the magnetic flux density vector **at point** \overline{r} is **B**(\overline{r}):

Q: Our "field theory" of electromagnetics says that the magnetic flux density will apply a force on the moving charge (i.e., current). Precisely what is this force (i.e., its magnitude and direction)?

A: The answer is not quite as simple the electric force equation. The force F_m on charge Q moving at velocity u is :

 $\mathbf{F}_m = \mathbf{Q} \mathbf{u} \times \mathbf{B}(\overline{r})$

Note therefore, that the resulting force F_m will be orthogonal to both the velocity vector u and the magnetic flux density vector $B(\overline{r})$. E.G.,:

B(r

- 11

Note the **maximum** force is applied when the magnetic flux density vector is **orthogonal** to the velocity vector (i.e., $\theta = 90^{\circ}$).

Alternatively, the force on the charge will actually be **zero** if the magnetic flux density is **parallel** to the velocity vector (i.e., $\theta = 0^{\circ}$):

Note there is **no** equivalent situation for the **electric** force—the only way F_e can be zero is **if** the electric field $E(\overline{r})$ is **zero**!

 $\mathbf{F}_{m} = 0$